METHOD OF ALTERNATING DIRECTIONS FOR THE
SOLUTION OF PARABOLIC EQUATIONS WITH A
CONVECTIVE TERM

F. F. Rimek UDC 517.945.8
For the solution of the differential equation describing the process of heat propagation in an
oil stratum we propose a monotonic difference scheme of alternating directions which con-

verges with a rate of O(h? + 7%,

1. Statement of the Problem

The mathematical problem may be stated in the following way,

In the rectangular cylinder D = (A + T)X [0 <t =T], where A =4{0<xy <lg, @ =1, 2}, we are re-
quired to find a solution of the equation

v S Lut (s 0, x€A x = ) 1)
which satisfies the boundary condition
Up=g(x ¥ @
and the initial condition
u(x, 0) = u, (x). . 3)
Here
2
d ou ou
Lu:EL,Lu: Ay (x - v, (X ,
o Lt == ”axa%”)am

)

Y(x) =cp >0, Agfx) = ¢ >0, cyand ¢ are constants,

2. Difference Scheme

We cover the domain & + I' with a uniform rectangular mesh ‘:’_k = {Xiaj icha, iy =0, 1,..., No,
Ny = la/ha, @ =1, 2}. Let wp denote the set of interior nodes of the mesh Wy, We introduce a mesh for
the time coordinate t in a similar way:

atz{tk:2k’[, k:(), 1.,..., Na, N3:T/2'C}.

On the mesh Wy, X W we approximate the differential problem (1)-(3) by means of a difference prob-
lem., For x Gah X W, we may write the equations

2k+1 __ 2k '

o Y - ¥ _ AP 4 Ayt + @, 4)
2h+e __ gkt

P ‘————————y - Yy = Aly2k+1 + A2y2k+2 + (P2k+1_ (5)

To Egs.(4) and (5) we must append the initial condition
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g5 0 =1, (9, 5€w, ©
and the difference boundary conditions

yzkﬂ _ _ﬂ;ﬂ (gzk 4 g2ty — “;‘Az (g%*? — g*) )

for X1 = O(ii = 0), Xy = ll(ll = Nl)’
g = g2 (8)

for X9 = 0(12 = 0), X9 = lZ(iZ = Nz).

We obtain the condition (7) by subtracting Eq. (5) from Eq.(4) and noting that y¥ = g%k, yK+2 = g2k +2
for x; = 0 and x4 =1,,

In Egs. (4)-(8) we have used the notation

X=X = (xix = iihy, %, = ihy), y = Yy,

p=p,, = 24 ©)
Vg -+ Vel (+1g) Vo, — Vgl (—~1g)
Ay = Ry (dyyz ), + [ —ellel ) gy [ YoVl } 4@,
= R (el e, ( 2y ) bra ( 2, Y
where
2}\'05;%‘

R(x;ia =

[ L :v(x_[’ X_.);
27\1{’”05 + by !Va;ig;‘ Rt Ly THi

Masigorie Yy g — Rasigtie + }va;iq—lﬂ ) Y T Aatsigm1/2 y"“i
H,

(da‘y;a)xa =

is a second-order divided difference;
Yigt1 — Y, Y Yy

(22 (¢4

(+1g) (

— —lg)

d - dioﬁ-l == 7\@5;5“4_:/2; d " = dia = 7‘0&;@—1/2, o =1 2.

In this notation we have omitted, for simplicity, one of the subscripts, which for a given direction @ is
fixed,

A difference operator of the form (9) was used for the first time in [2] to formulate a monotonic,
locally uniform scheme converging with a rate of O(h + 7),

The alternating direction scheme gives a2 much more accurate solution for one and the same time
step than does the locally uniform scheme, although the computational stability of the locally uniform
scheme is somewhat better. Because of this the alternating direction scheme can be used with a fairly
crude time step when making calculations on an electronic digital computer,

To implement the scheme (4)-(8) we can use the method of paths [1]. Indeed, we may rewrite Egs.
(4) and (5) in the form

0;
b o gl L S - B W 7 (10)
A yi1~1,z‘2 Gigiy Jigiy T Vi, Ji L, T bty 12 1'2
212 2ht2 | 2kt Py, Bl APl g2kt (11
Doiyiy Yig bt ™ Cz;ilz2 Yii, 2040y Yoy 0t = i 1Y, iyiy
=12 ..., N,—1, =12 ..., N;—1,

where
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ca=aq+ba"}_£_’ o, ﬁzlv 2! G#ﬁ
T

Since ag > 0, by >0, cqy > g +bg, then, according to [1], the method of paths is stable, for arbitrary
steps hy and hy, for Eq.{10) with the conditions {7) and for Eq.(11) with the conditions (8).

The problem of selection of a method for approximating stationary one-dimensional equations of the
form (1) with an error of O(h?) was treated in detail in [4]. The schemes presented there, involving "cen-
tral differences" and "noncentral differences," are monotonic, i.e., the maximum principle is valid for
these schemes only for very small values of the convective speed. Thus, for example, for a central differ-
ence scheme in which the derivative Vg 0u /9%q is approximated by a central difference derivative, the
maximum principle is valid and it is solvable by the method of paths only when the conditions hy < 2A,,
/lvgl, @ =1, 2 are satisfied.

In real problems the coefficient Vg may prove to be so large that this condition is almost never sat-
isfied,

3. Error of Approximation in the Alternating

Direction Method

+
Let u = u(x, t) be 2 solution of the differential problem (1)-(3), and let yX 72 = yflfiz ? be the solution

of the difference problem (4)~(8). As usual, we shall assume that the problem (1)-(3) has the unique solu-
tion u = u(x, t) and that all the continuous derivatives of the functions u, Ay, V& required in the course of
the development exist.

We consider the differences z% = yXk _ ok, 7% ¥1 = ghk+1_ gok+1

Using Taylor series expansions, we may readily show that

G = ﬁ‘w_ﬂé‘_“:k_ + 0. (12)

We substitute ka =z 1+ 4K gpg y2k+1 =K1 % 4 yK+2)/5 4 O into Eq.(4), and also yK 2= AR
+yuK+2 and the expression (12) into Eq.(5); then to ascertain the error incurred in the scheme (4)-(8), we
have the problem

skML__ gk

FalE Ry 13

o - = A2 A ‘P?Hzg (18)
gkt g

T = AT AR g, (4

T
zzkﬂ —_ %A2 <g2k+2_ gzk) (15)
for Xy = 0(i1 =0), Xy = ll(il = N3)’
242 () (16)
for X9 = 0(12 = 0), X9 = lz(iz = Ng),
z(x, 0) = 0. (17)
Here ¥; and ¥, are the approximation errors of schemes (4) and (5), respectively:
2k k+2 gkt2 2k
g = p U WAt 5 L et 0@,
11
2k 2k+2 2k+e ___ %k
g = A TR g p T 5 L et 0@
T
The sum ¥ =¥; + ¥, is then the approximation error of the whole scheme (4)-(8).
We now calculate Ayu, To do this we write it in the form
v, 4| (+1g) Vo — Vol (—lg)
gt = (Ry— 1) (At )s, + ('_E;Tli) 4y ( T}»@LL) 7y (18)
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Using Taylor series expansion, we obtain

0 Ou 2

) = o 19

s )ry = 5 (xa " )+ 0k, (19)

(+1g) ou h d ( ou ) 2 {20)
d %y, =M —2 A 0 (H2):
Y “axa+2 0%, “axa,+(“

(—lg) ou h 0 ( Ou ) 2 @1
. B by LOH).
4G =t dx, 2 dx, dx,, (o)

Substituting Egs.(19)-(21) into Eq.{(18), we obtain
Ou Ou_\ ol 9, O ) : (” M) 1 o)
0%, )+Vm ox + 2,  Oxg ( “ ox, g ox, \ = Ox, ) ¢

[Valftg 9 ou ) Volb, O ( ou ) 2
=L u— A + . + Ok
ot g + Vol By O, \ T 0x, 2h,  Ox, x (Fa)

9
= (R, — 1 Ao
Aot = (R —1) - (

o

a

_ Malfa \* 9 () a”j+0h2 = Lu+ 00 (22)
—Lu+( 2| o (R ) O = L0

Using Eq. (22) and the fact that (u2k+2—- qu)/ZT = 8u2k+1/8t +O(T%), we may write
u2k + u2k+2 2k+1

ou
e T S TR Y7
2 + Lou Y ot

P

_{‘ f2k+1 -+ 0 (h2 + 1:2)

1lekjLz =1,

/ 2k / 2k+2
R —p ou 1 (Luwz__p ou
2 \ ot 2\ ot

+ %) + é (Lo — Lyu®*%) 4 O (B2 - 7). (23)
Since the expressions in the first two parentheses are zero, we have
Y2 = % (Lo — Ly™*%) 1 O (B + 7). (24)

Here h = max (hy, hy).

Similarly, we may calculate
T = (L — L) 0 (1 7).
Adding Eqgs. (24) and (25), we have
YRR = 2 3t = O (B2 - 1),

we have thus proved the following theorem.

THEOREM 1. The alternating directions scheme, defined by Eqs. (4)-(8), possesses a total approxi-
mation of second order with respect to the space and time steps of the mesh.

4, Stability and €Convergence of the Alternating

Directions Method

In the proof given in [3] of the convergence of the alternating directions scheme the permutability of
the operators Ay and A, is essential. In our case permutability of the operators A; and A, is invalid. We
have succeeded in demonstrating convergence of the difference scheme through the use of the maximum
principle,

We write the error z in the form z% = v, z2K*1 - %k+1 w1 gkt o vEY2 yhere w1
== TAg(u2k+2— uzk)/z is given for 0 =x; =1;, 0 <x,<I,, Now from the relations (13)-(17) we obtain the
following problem for v:

e

0 (26)

- :A102k+1+sz2k+%2k+2,

pRkte g2kt

o :Alv2k+1 + A202k+2 + %2k+2, (27)

T
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¥ =0
for x; = 0(i; = 0), x4 = {4(iy = N),
vt =0, =0 (29)
for xy = 0(ip = 0), x5 =1y(iy = Ny),
u(x, 0)=0. (30)

Here
A2 g — Lol L A At O 1),
w2 22 _‘_g_ W LA o = A O (B2 4 1),

We then have the following theorem,

THEOREM 2. The solution of the difference problem (4)-(8) converges uniformly to the solution of
the differential problem (1)-(3) at a rate equal to the order of the approximation, i.e., at a rate of O(h?
+ %),

We rewrite Egs. (26)-(30) in the form

o%+-1 oht1 oh-t-1 22
1,1, Vi iy — Custy Vit - Dy Uiy = — Fliitin
_ =12 ..., N,—1, @30
B =0, iy =0, N,
i =12 ..., Ny—1,
2042 242 212 20+2
2110 Uty iyt = Oty £, Uity -+ Dosigi, Ut i = — Fagg, %
ihb=1,2 ..., Ny;—1, (32)
v, =0, i=0, N,,
i =12 ..., N—1,

where
P2 2kt A %vzk,
[ R L
For difference equations of the form (31), (32) with homogeneous boundary conditions, a maximum

principle [1] is available providing that ag >0, bg >0, ce@ = ay +by, @ =1, 2, Therefore, in accord
with [1], we have the following inequalities for the solutions of Egs. (31) and (32):

2k}-2
max [p?*+!| < max il , (33)
& o
k42
max |u2+2]  max F ‘ , 0= —E-. (34)
Eh o T
We introduce a norm for the vectors in the following way:
In () = max n (x)).
xgoy,
Then the inequalities (33) and (34) may be rewritten in the form
P < -kt ]](E + %Az) o, (35)
(]

o2+ < ZT; I3 -+ ‘I( E+ _;_ A1> g2t ‘ . (36)

Since A; and A, are negative operators, then

“(E +Za,) v%u <l

‘
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TABLE 1, Exact and Numerical Solutions for i

i T I
E — A 261 < (|p2k+1
xy=1.9andx; =1.9 }( + 0 2) v f’ <o

Numerical solutions and therefore
‘ Putions | copmar | fom the .
‘Slé {fgg'gce zré;récr);(;mc o2t \<_C_O_”n%k+2” + 024, (37)
0,01 7,2201 7,2266113 7,231168 <
N+ R R WP < o B 88)
0,04 7,2216 —3527,73 7,252359
8:82 ;gggg __5%%%1711:3 Z;ggg?ﬁ; Substituting inequality (37) into inequality (38) and

carrying out the recurrent substitution [l v I, I k-2 I,
..., we obtain

k
<N o (B ) o (39)
k=0

We have thus demonstrated the uniform stability of the scheme defined by Eqgs. (4)-(8). From inequality
(39) there also follows the convergence of the solution of the differential problem (1)-(3) to the solution
of the difference problem (4)-(8) at a rate equal to the order of the approximation, since

A2 = O (k2 -+ 72).

The validity of the latter equality is easily verified since w1 js defined even for x4 =0, xy =Ly,

5. Numerical Calculations

To check out the quality of the difference scheme considered here, the known analytic solution of
the problem (1)~(3) in the square (1 = xy, Xy = 2)with

YO %) =0 g A (X Xy) = XXy Ao (Xp, Xp) = Xy + X3
V() = —exp(Bx);  vy(xy, X)) = —exp [S(Xi + xz)};
g X )= 2x, [t — 20, — 1 4- exp (5x)] + 2%, {t — 2 + exp [ (x, + 2] };

P24 for ox =1,

[

L+ +4 for x; =2, :
g(x, X, )= Uy (x1, %) = 82+ 12,

BHeED for x=1,

[

{6244 for 5=2

was compared with the numerical solutions obtained from the central difference scheme and from the
monotonic scheme.

Results of the calculations at the point [1,9, 1.9] are shown in Table 1, the mesh steps for the vari-
ables x, and x, being taken equal to 0.1,

This example shows that the monotonic scheme of alternate directions can be successfully used to
calculate processes described by differential equations of the form (1), whereas a strong instability de-
velops at large convective speeds when the central difference scheme and other nonmonotonic schemes
are employed,

The scheme presented here may be used for solving quasilinear equations of the form (1) and it may
be readily generalized to the case of plane-parallel geometry.

NOTATION
D is the region in which the solution is sought;
r is the boundary of the region;
Xy, Xo are space coordinates;
t is the time;
u is the function sought;
L is the differential operator;
Wy is the mesh in space variables;
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hy, h are steps in the mesh;
1 2

h = max (hi’ h2);

N, Ny are the number of steps of the mesh ah along the axes x;, X,, respectively;
o is the mesh for the time coordinate;

T is the time step;

N, is the number of steps along the time axis;

Ay, A are difference operators;

y is the mesh analog of function u;

2 is the error; ‘

] is the error of approximating the differential problem by a difference scheme,
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